Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This paper provides information, suggestions and resources for men, specifically cis-white men, to become allies, supporters and followers in the fight for equity and inclusion of women and underrepresented groups in physics in science, technology, engineering and mathematics fields in general and in society as a whole.more » « less
- 
            Foley, Catherine P; Kane, Deborah; Turner, Joanna (Ed.)The past few years have brought a reckoning to the United States, as awareness of our country’s injustices dramatically increased, elevating international movements for equity. Although the road to equity remains long, the United States delegation was inspired to highlight a few women's stories showcasing their success in physics as well as their struggles. We aim to elevate their accomplishments, knowing we cannot possibly highlight all the amazing stories, to further validate and support women’s importance in physics. Physicists are presented in three main categories: (1) Legacy: Women in physics who have made their mark (no longer active, retired, or deceased); (2) Active: Women who are making their mark now (already established in the field, mid-career to senior); and (3) Emerging: Women who are primed to make their mark in the future (current students and postdocs or early career).more » « less
- 
            null (Ed.)ABSTRACT The Sunyaev–Zel’dolvich (SZ) effect is expected to be instrumental in measuring velocities of distant clusters in near future telescope surveys. We simplify the calculation of peculiar velocities of galaxy clusters using deep learning frameworks trained on numerical simulations to avoid the independent estimation of the optical depth. Images of distorted photon backgrounds are generated for idealized observations using one of the largest cosmological hydrodynamical simulations, the Magneticum simulations. The model is tested to determine its ability of estimating peculiar velocities from future kinetic SZ observations under different noise conditions. The deep learning algorithm displays robustness in estimating peculiar velocities from kinetic SZ effect by an improvement in accuracy of about 17 per cent compared to the analytical approach.more » « less
- 
            The standard model of cosmology has provided a good phenomenological description of a wide range of observations both at astrophysical and cosmological scales for several decades. This concordance model is constructed by a universal cosmological constant and supported by a matter sector described by the standard model of particle physics and a cold dark matter contribution, as well as very early-time inflationary physics, and underpinned by gravitation through general relativity. There have always been open questions about the soundness of the foundations of the standard model. However, recent years have shown that there may also be questions from the observational sector with the emergence of differences between certain cosmological probes. In this White Paper, we identify the key objectives that need to be addressed over the coming decade together with the core science projects that aim to meet these challenges. These discordances primarily rest on the divergence in the measurement of core cosmological parameters with varying levels of statistical confidence. These possible statistical tensions may be partially accounted for by systematics in various measurements or cosmological probes but there is also a growing indication of potential new physics beyond the standard model. After reviewing the principal probes used in the measurement of cosmological parameters, as well as potential systematics, we discuss the most promising array of potential new physics that may be observable in upcoming surveys. We also discuss the growing set of novel data analysis approaches that go beyond traditional methods to test physical models. These new methods will become increasingly important in the coming years as the volume of survey data continues to increase, and as the degeneracy between predictions of different physical models grows. There are several perspectives on the divergences between the values of cosmological parameters, such as the model-independent probes in the late Universe and model-dependent measurements in the early Universe, which we cover at length. The White Paper closes with a number of recommendations for the community to focus on for the upcoming decade of observational cosmology, statistical data analysis, and fundamental physics developmentsmore » « lessFree, publicly-accessible full text available September 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
